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[1] We present an analysis of methane (CH4) emissions using atmospheric observations
from five sites in California’s Central Valley across different seasons (September 2010 to
June 2011). CH4 emissions for spatial regions and source sectors are estimated by
comparing measured CH4 mixing ratios with transport model (Weather Research and
Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on two
0.1° CH4 (seasonally varying “California-specific” (California Greenhouse Gas Emission
Measurements, CALGEM) and a static global (Emission Database for Global Atmospheric
Research, release version 42, EDGAR42)) prior emission models. Region-specific Bayesian
analyses indicate that for California’s Central Valley, the CALGEM- and EDGAR42-based
inversions provide consistent annual total CH4 emissions (32.87 ± 2.09 versus
31.60 ± 2.17 TgCO2eq yr�1; 68% confidence interval (CI), assuming uncorrelated errors
between regions). Summing across all regions of California, optimized CH4 emissions are
only marginally consistent between CALGEM- and EDGAR42-based inversions
(48.35 ± 6.47 versus 64.97 ± 11.85 TgCO2eq), because emissions from coastal urban
regions (where landfill and natural gas emissions are much higher in EDGAR than
CALGEM) are not strongly constrained by the measurements. Combining our results with
those from a recent study of the South Coast Air Basin narrows the range of estimates to
43–57 TgCO2eq yr�1 (1.3–1.8 times higher than the current state inventory). These results
suggest that the combination of rural and urban measurements will be necessary to verify
future changes in California’s total CH4 emissions.
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1. Introduction

[2] Methane (CH4) is the second highest contributor to cli-
mate change among greenhouse gases (GHGs) behind car-
bon dioxide (CO2), based on its concentration changes in
the atmosphere since the start of the industrial revolution,
the long residence time of CH4 and its ability to absorb infra-
red radiation. Atmospheric CH4 levels have increased by
about 150% since 1750 accounting for ~ 25% of the global
total radiative forcing from all long-lived and globally mixed
GHGs [Hofman et al., 2006;Montzka et al., 2011]. Given the

significance of CH4 as a GHG, it is important to be able to
quantify changes in emissions. However, bottom-up emis-
sion inventory models are highly uncertain due to lack of
driver data and incomplete understanding of emission pro-
cesses. Atmospheric inverse modeling, which uses observed
concentration changes in CH4 to infer sources, potentially
provides an effective tool for understanding CH4 emissions
[Houweling et al., 1999; Gimson and Uliasz, 2003; Kort
et al., 2008; Zhao et al., 2009; Jeong et al., 2012a].
[3] California currently emits approximately 500 Tg of

CO2eq GHGs, with CH4 estimated to contribute ~6% of the
total [California Air Resources Board (CARB), 2011].
Because California has committed to an ambitious plan to re-
duce GHG emissions to 1990 levels by 2020 through
Assembly Bill 32 (AB-32), planning effective mitigation
efforts and verifying future emission reductions require accu-
rate accounting of CH4 emissions.
[4] This paper quantifies regional CH4 emissions from

California within a Bayesian inverse modeling framework,
representing the first analysis of CH4 emissions in
California using atmospheric observations from multiple
sites across different seasons (September 2010 to June
2011). The work expands on studies by Zhao et al. [2009]
and Jeong et al. [2012a] that quantified CH4 emissions from
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central California using a single tower near Walnut Grove,
California (WGC) by combining measurements from the ad-
ditional sites in the Central Valley and including published
emission estimates from the Los Angeles metropolitan area
to capture emissions from California’s urban regions. In
section 2, we describe the methods we employed, including
atmospheric measurements, a priori CH4 emissions invento-
ries, meteorology and trajectory transport modeling, and the
Bayesian inverse method. Section 3 presents results, includ-
ing seasonal variation in footprints, and the inferred surface
emissions of CH4 from California for different regions and
sources. Section 4 further discusses the results and presents
conclusions for CH4 emissions in California.

2. Data and Models

2.1. CH4 Measurements and Boundary Conditions

[5] CH4 measurements were made at the collaborative
five-site GHG network in California’s Central Valley during
September 2010 to June 2011: Arvin (35.24°N, 118.79°W;
ARV), Madera (36.87°N, 120.01°W; MAD), Tranquility
(36.63°N, 120.38°W; TRA), Sutter Buttes (39.21°N,
121.82°W; STB), and WGC (38.27°N, 121.49°W) (STB
measurements are available only for May–June 2011). CH4

measurements at WGC were made at 91 and 483m above
ground level on a tall tower, beginning in September 2007
[Andrews et al., 2013]. CH4 measurements at 91m were used
for inverse modeling, and additional information about these
measurements is provided by Zhao et al. [2009] and Jeong
et al. [2012a]. All other stations measured CH4 at ~10m
above the ground using Picarro model 2301 analyzers that
were calibrated with standard gases from NOAA every
6months and programmed to measure a standard gas every
11 h in order to check the precision. After examining preci-
sion checks and removing special events (e.g., changing fil-
ters), raw data collected every few seconds are averaged
into 3-hourly measurements for inverse modeling. We apply
data filtering based on vertical mixing to data from WGC
where vertical CH4 profiles are available. As in Jeong et al.
[2012a], data were selected such that the CH4 mixing ratio
difference (C91–C483) between 91 and 483m fell within the
range �1 SD< (C91–C483)< 3 SD, where SD is the standard
deviation of the difference of the mean diurnal cycle between
1200 and 1700 local standard time (LST). For other sites, we
use afternoon data (1200–1700 LST) when boundary layers
are reasonably well developed in the Central Valley
[Bianco et al., 2011]. As will be described in section 3.1,

for winter, we use data during 1100–1600 LST due to earlier
collapse of the boundary layer in simulations than in mea-
surements. In section 3.1, we also report results of a sensitiv-
ity test to periods with potentially low-simulated boundary
layers that suggests our posterior emissions estimates are
not significantly affected by inadequate mixing.
[6] CH4 boundary values were estimated using data from

the NOAA Earth System Research Laboratory’s Global
Monitoring Division using an approach similar to the one
used in Jeong et al. [2012b]. Marine boundary layer data
from the Cooperative Air Sampling Network (http://www.
esrl.noaa.gov/gmd/ccgg/flask.html) and vertical profile data
from aircraft (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/)
were used to create a smoothed three-dimensional (3-D) cur-
tain representing the Pacific boundary and varying with lati-
tude, height, and time. The NOAA aircraft data are primarily
collected over North America and along the Pacific Coast.
Since data along the coasts are sparse and the impact of sur-
face fluxes on free tropospheric data is small, we have used
all available aircraft data in our estimate. We ran back trajec-
tories for all aircraft observations using the National Centers
for Environmental Prediction reanalysis wind fields (global)
and removed any observations for which the trajectories drop
below 3 km above ground level. We defined a domain fol-
lowing the coast of North America and identified the latitude
and altitude when the trajectory exits the domain. We also
used aircraft data from Hawaii, which is outside the North
American domain, and in that case, the actual latitude and
altitude of the observation were used. Data are binned
according to the latitude and altitude where they exit the
domain (10° latitude resolution over 20°–70°, 1000m verti-
cal resolution, 3000–7000MASL (meters above sea level)).
We then fit smooth curves to the binned data using the
method of Thoning et al. [1989] (see also http://www.esrl.
noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html). For altitudes below
1000MASL, we use a Pacific version of the NOAA
Greenhouse Gas Marine Boundary Layer Reference (http://
www.esrl.noaa.gov/gmd/ccgg/mbl/) that is based on surface
observations from the Cooperative Air Sampling Network
and which varies with latitude and time. In the range
1000–3000MASL, values are interpolated between the Pacific
Marine Boundary Layer Reference and the free tropospheric
curtain derived from the aircraft data. Time-varying uncertainty
in the boundary curtain is estimated using the seasonal cycle of
the root mean square of the residuals from the smoothed-curves.
Average background values are computed for each footprint
simulation by sampling the curtain at each of the 500 particle

Table 1. Annual CALGEM CH4 Emissions by Region and Sector (TgCO2eq)
a

Sector

Region
Sector
TotalR01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13

Crop agriculture 0.00 0.00 0.00 0.01 0.00 0.50 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.54
Landfill 0.02 0.04 0.11 0.08 0.03 0.46 0.87 0.19 0.34 4.00 0.10 0.29 0.06 6.60
Dairy livestock 0.00 0.00 0.01 0.10 0.01 0.36 0.08 3.79 0.02 1.71 0.03 5.77 0.01 11.90
Nondairy livestock 0.03 0.10 0.11 0.06 0.17 0.19 0.12 0.54 0.11 0.64 0.07 1.00 0.03 3.17
Natural gas 0.00 0.01 0.04 0.02 0.01 0.33 0.33 0.10 0.05 0.91 0.02 0.11 0.03 1.95
Petroleum 0.00 0.00 0.05 0.00 0.00 0.03 0.05 0.02 0.07 0.19 0.00 0.71 0.00 1.13
Wastewater 0.00 0.09 0.02 0.01 0.00 0.03 0.17 0.08 0.06 1.33 0.01 0.11 0.01 1.92
Wetland 0.01 0.00 0.00 0.00 0.22 0.18 0.03 0.27 0.01 0.03 0.01 0.02 0.01 0.79
Region total 0.06 0.24 0.34 0.28 0.44 2.08 1.65 5.00 0.66 8.81 0.25 8.01 0.17 28.00

aAssumed a global warming potential of 21 gCO2eq/gCH4 [Intergovernmental Panel on Climate Change, 1995].
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trajectory endpoints (near the domain boundary at 130°W) and
calculating the average values. Uncertainty in the estimated
background values is discussed in section 2.5.

2.2. A Priori CH4 Emission Models

[7] This work adopts the California Greenhouse Gas
Emission Measurements (CALGEM) project a priori CH4

emission model (henceforth CALGEM model) described by
Jeong et al. [2012a], which is provided at a high spatial resolu-
tion (0.1° × 0.1°) for California and has seasonal components
for wetlands and crop agriculture [CALGEM, 2013]. Table 1
provides CALGEM emissions used in this study by source
and region, which include emissions from rice agriculture and
wetlands (see Figure 1 for regions). Here the high-resolution
emissions were scaled to match the California Air Resources
Board (CARB) inventory for 2008 by sector (summing to a
total of 28TgCO2eq for California) (California Air Resources
Board, California Greenhouse Gas Emissions Inventory.
California Air Resources Board Staff Report, 2011). The
EDGAR42 (European Commission Joint Research Centre and
Netherlands Environmental Assessment Agency, Emission
Database for Global Atmospheric Research (EDGAR), release
version 4.2, 2011, http://edgar.jrc.ec.europa.eu) CH4 emission
model (annual total = 38TgCO2eq or 1.4 times CALGEM to-
tal) also provides high-resolution (0.1° × 0.1°) emission maps.

Table 2 shows all 16 emission source sectors from the
EDGAR42 prior emission model by region, which can be
compared with the CALGEM model shown in Table 1.
Bayesian inversions adjust region sums (region analysis) or
source sums (source analysis) shown in Tables 1 and 2 to yield
optimized (posterior) emissions.
[8] Figure 1 shows the annual total emission maps for the

CALGEM and EDGAR42 prior models along with the sub-
region classification for inverse modeling. Compared with
the California-specific CALGEM model, EDGAR42 gener-
ally shows a similar spatial distribution of CH4 emissions.
The CALGEM model estimates higher total emissions for
the Central Valley (Regions 6, 8, and 12) than EDGAR42,
mainly due to the higher estimates of dairy emissions. As
shown in Tables 1 and 2, for Regions 7 and 10, which include
the San Francisco Bay Area and the Southern California re-
gion, respectively, the EDGAR42 model estimates signifi-
cantly higher CH4 emissions than the CALGEM model.
[9] Because there is no specific emission estimate for

wetlands from CARB, wetland CH4 emissions (not included
in EDGAR42) for the CALGEM prior emission model
were taken from monthly averages of the Carnegie-
Ames-Stanford-Approach CH4 (CASA-CH4) model from
Potter et al. [2006]. Also, seasonally varying (monthly) CH4

emissions for crop agriculture were taken from the

Figure 1. (a) CALGEM total CH4 emissions (nmolm�2 s�1) with network measurement locations (black
dots), (b) EDGAR42 total CH4 emissions (nmolm�2 s�1), and (c) 14 subregion classification for inverse
modeling including the region outside California (Region 14).

Table 2. Annual EDGAR42 CH4 Emissions by Region and Sector (TgCO2eq)

Sector

Region
Sector
TotalR01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13

Agricultural waste and burning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02
Energy manufacturing transportation 0.00 0.00 0.01 0.00 0.00 0.03 0.08 0.01 0.01 0.26 0.00 0.03 0.01 0.44
Enteric fermentation 0.05 0.24 0.24 0.14 0.35 0.37 0.31 1.38 0.27 1.18 0.15 2.44 0.09 7.22
Fugitive from solid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas production and distribution 0.01 0.02 0.11 0.04 0.02 0.86 2.05 0.29 0.29 5.90 0.04 0.74 0.13 10.50
Industrial process and product use 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.06 0.00 0.00 0.00 0.10
Manure management 0.02 0.03 0.02 0.02 0.04 0.04 0.10 0.71 0.04 0.92 0.02 0.38 0.01 2.34
Oil production and refineries 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.03 0.15 0.00 0.12 0.00 0.45
Residential 0.00 0.01 0.02 0.01 0.00 0.04 0.08 0.03 0.03 0.24 0.01 0.05 0.02 0.54
Road transportation 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.01 0.00 0.18 0.00 0.01 0.00 0.29
Solid waste disposal 0.02 0.06 0.23 0.12 0.05 0.88 2.24 0.49 0.34 6.92 0.08 0.81 0.16 12.39
Wastewater 0.00 0.00 0.03 0.01 0.00 0.19 0.63 0.09 0.08 2.14 0.01 0.13 0.03 3.34
Agricultural soils 0.00 0.01 0.01 0.00 0.01 0.17 0.02 0.15 0.00 0.02 0.00 0.28 0.01 0.68
Nonroad transportation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fossil fuel fires 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large scale biomass burning 0.00 0.00 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.10
Region total 0.10 0.37 0.68 0.34 0.47 2.62 5.73 3.16 1.11 17.99 0.31 5.01 0.46 38.34
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DeNitrification-DeComposition (DNDC) model output (as-
suming the 1983, high irrigation case) described by Salas
et al. [2006]. The crop agriculture sector was scaled to the
CARB 2008 inventory (0.54TgCO2eq yr

�1) using the
seasonal pattern from DNDC. As shown in Table 2,
EDGAR42 provides an emission sector for agriculture (i.e.,
agricultural soils).

2.3. Atmospheric Transport Modeling

[10] We use the coupled WRF-STILT (Weather Research
and Forecasting and Stochastic Time-Inverted Lagrangian
Transport) model for particle trajectory simulations [Lin
et al., 2003; Skamarock et al., 2008; Nehrkorn et al.,
2010]. The WRF-STILT model has been used to constrain
GHG emissions in many studies including airborne measure-
ment-based [e.g., Gerbig et al., 2003; Kort et al., 2008] and
tower measurement-based [e.g., Zhao et al., 2009; Jeong
et al., 2012a, 2012b] inversions. An ensemble of 500
STILT particles are run backward in time for 7 days driven
with meteorology from the WRF model (version 3.2.1)
[Skamarock et al., 2008]. Hourly predicted mixing ratios
based on WRF-STILT are aggregated into 3-hourly averages
for inverse modeling.
[11] The WRF model simulations closely follow those

described in Jeong et al. [2012a, 2012b] with some modifica-
tions, which are summarized here. We use version 3.2.1 of
the WRF model [Skamarock et al., 2008] instead of
WRF2.2. Five domains (d01–d05) of 36, 12, 4, and two
1.3 km resolutions were used in the WRF simulations. The
4 km domain (i.e., d03) was configured to represent most of
California with the two 1.3 km nested domains (d04 and
d05) that cover the San Francisco Bay Area and the metro-
politan area of Los Angeles, respectively. In this study, we
used the WRF meteorology within the d01, d02, and d03
domains to drive the STILT model because the GHG mea-
surement sites are located in the Central Valley. The WRF
model was run with two-way nesting instead of one-way
nesting used in Jeong et al. [2012a, 2012b]. As in Jeong
et al. [2012a, 2012b], 50 vertical levels were employed to re-
solve planetary boundary layer (PBL) heights over complex

terrain features of California. Initial and boundary meteoro-
logical conditions were provided by the North American
Regional Reanalysis data set [Mesinger et al., 2006]. All sim-
ulation durations were 30 h including 6 h of model spin up.
The model also incorporated 3-D analysis nudging every
3 h in the 36 km domain.
[12] As an extension beyond the previous work, we ran the

WRF model multiple times to evaluate different combina-
tions of surface model and boundary layer schemes. The spe-
cific combination of land surface models (LSMs) and PBL
schemes that yielded the best comparison with PBL heights
retrieved from the wind profilers [Bianco and Wilczak,
2002; Bianco et al., 2008] in the Central Valley varied with
season and location. Here we evaluated the WRF meteorol-
ogy using data for the Sacramento (SAC), Chowchilla
(CCL), Chico (CCO), and Lost Hills (LHS) sites shown in
Figure 2 (see section 2.5 for details on evaluation). For late
spring through early fall, the combination of the five-layer
thermal diffusion LSM (5-L LSM hereafter) and the
Mellor-Yamada-Janjic (MYJ) PBL scheme [Mellor and
Yamada, 1982; Janjić, 1990] performed best. For example,
for the summer month of June 2010 (due to profiler data
availability, 2010 data are used for some sites and months),
the 5-L LSM and MYJ combination (root-mean-square
(RMS) errors = 280–290m) performed better than the Noah
LSM and MYJ combination (RMS errors = 400–450m) for
the SAC and CCL sites. This is likely due to the fact that
the 5-L LSM actively manages soil moisture as a function
of season and land cover types that include irrigated
soils. Thus, we use the 5-L LSM during the months of
April–September that were identified as the period of the
year with strong evapotranspiration (California Irrigation
Management Information System, http://wwwcimis.water.
ca.gov/cimis/data.jsp). The 5-L LSM scheme uses a fixed
season-dependent value for the irrigated soil (i.e., irrigated
cropland and pasture category) to generate an accurate
boundary condition for soil moisture and hence energy bal-
ance. The one exception is that of the LHS site during late
spring–early fall where the 5-L LSM and Yonsei University
(YSU) PBL scheme combination performed better than the
5-L LSM and MYJ combination. For example, for June
2010, the RMS error for the 5-L LSM and MYJ combination
(526m) was significantly larger than that of the 5-L LSM and
YSU combination (359m). We speculate that the 5-L LSM
may overestimate soil moisture at the LHS site, reducing
PBL height in a manner that is compensated for by the
overestimation of PBL height by the YSU scheme.
However, we lack the data to test this hypothesis at this time.
For late fall through early spring, the Noah LSM and MYJ
combination performed well because the more complicated
Noah LSM handles the energy balance better when precipita-
tion is the dominant source of moisture.

2.4. Bayesian Inverse Model

[13] The inversion approach expands on earlier efforts by
Zhao et al. [2009] and Jeong et al. [2012a, 2012b], and we
express the model-measurement relation through a linear
model:

c ¼ Kλ þ v; (1)

where c is the measurement vector (n× 1, n is the number of

Figure 2. Location of GHG measurement sites (black) and
wind profiler sites (red) in the Central Valley with predicted
monthly mean PBL heights (m) for June 2011, 14:00 LST
shown in color.
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measurements), which represents 3 h mean, background-
subtracted CH4 mixing ratios, K =FE (an n × k matrix, k is
the number of regions or sources), F is the footprint (n ×m,
m is the number of grid cells of 0.1° × 0.1°), E is the emis-
sions (m × k), λ is a k × 1 state vector for scaling factors, and
v is a vector representing the model-data mismatch with a co-
variance matrix R (n × n), i.e., v ~N (0, R) where N denotes
the normal distribution. We model R as a diagonal matrix
to represent the total variance associated with all error
sources following Gerbig et al. [2003], Zhao et al. [2009],
Göckede et al. [2010], and Jeong et al. [2012a, 2012b]. The
uncertainty analysis, which constructs the R matrix, is
presented in detail in the following section. Depending on
the month and measurement site, we estimated the errors to
be 20–233 ppb (~30–60% of the background-subtracted
mean mixing ratio) to fill the diagonal elements of R.
Following the Gaussian assumptions, the posterior estimate
for λ is

λpost ¼ KTR�1K þ Q�1
λ

� ��1
KTR�1cþ Q�1

λ λprior
� �

; (2)

where λprior is the a priori estimate for λ (initially set to one
for all elements), andQλ is the error covariance matrix (k × k)
for λ. The corresponding posterior covariance for λ isV post ¼
KTR�1K þ Q�1

λ
� ��1

.
[14] We apply the inversion method at a monthly temporal

scale solving for λpost for each month. We relax our assump-
tion on prior uncertainty to 70% from the 50% uncertainty
used in Jeong et al. [2012a]. We use this relaxed prior uncer-
tainty because this analysis estimates CH4 emissions for a
much larger region with a higher uncertainty than that (i.e.,
central California) of Jeong et al. [2012a]. The inverse
modeling approach is applied in two phases as in
Bergamaschi et al. [2005] and Jeong et al. [2012a, 2012b].
After a first inversion, the second (final) inversion uses data
points that are accepted by applying the selection criteria |
ci� (Kλ)i|2< αRi, where α is a fixed value (α= 3). The out-
lier removal rates are 4.7–5.1% of a total of 1659 (i.e., total
size of n) observations depending on the inverse analysis.
As in the first inversion, the final inversion is performed
using the original a priori emission maps, and therefore, the
first inversion is used as a data selection tool for the
atmospheric observations.

2.5. Uncertainty Analysis

[15] The uncertainty in the model-measurement differ-
ences controls the relative weighting of the prior flux esti-
mates and the measured data in the inversion, adjusting
posterior CH4 emissions relative to a priori emissions.
Following Gerbig et al. [2003], Zhao et al. [2009],
Göckede et al. [2010], and Jeong et al. [2012a], the model-
measurement mismatch matrix, R (an n × n matrix), is repre-
sented as the linear sum of uncertainties from several sources
and modeled as a diagonal matrix:

Ri¼ SpartþSaggrþSbkgdþStransPBLþStransWIND;

where the particle number error (i.e., Spart) is due to the finite
number of released particles at the receptor location while the
aggregation error (i.e., Saggr) arises from aggregating
heterogeneous fluxes within a grid cell into a single average
flux. The background error (i.e., Sbkgd) is due to the uncer-
tainty in estimating the background contribution to the CH4

measurements at the receptor. StransWIND and StransPBL repre-
sent the uncertainty in CH4 mixing ratios caused by the errors
in wind speeds and directions, and the errors in PBL heights,
respectively. For the aggregation error (Saggr), we adopt the
result from Jeong et al. [2012a] and use 11% of the back-
ground-subtracted mean mixing ratio. The background error
(Sbkgd) is estimated by combining (in quadrature) the RMS
error in the estimation of the 3-D curtain (similar to that used
in Jeong et al. [2012b]) and the standard error of 500 WRF-
STILT background samples. Average values for Sbkgd were
calculated for each month during September 2010 to June
2011. Recall that for each simulation time, 500 particles are
released from the measurement location and tracked back-
ward in time for 7 days, and each particle is associated with
a background value at its final location. Each background
value also has an uncertainty estimate that is the time-,
height-, and latitude-dependent RMS error of the residuals
of the data that were used to construct the background cur-
tain. We compute the mean RMS error over the 500 particles
for each observation. The background errors were estimated
to be 17–25 ppb depending on the season and measurement
site. Only observation time points for which more than 80%
of the particles reached the western boundary of the domain
(130°W) were included in the study (an average of ~85%
retained after the filtering with summer having the highest
of >95%).
[16] To estimate the uncertainty in predicted CH4 mixing

ratios due to errors from modeled PBL heights (StransPBL)
and winds (StransWIND), we evaluated WRF model errors in
winds and PBL heights and then calculated the RMS differ-
ence in CH4 mixing ratios obtained from simulations with
and without input of an additional stochastic component of
wind and PBL errors in STILT. As described previously,
we evaluated PBL heights (Zi) and winds at four profiler sites
(Figure 2): CCO, SAC, CCL, and LHS. The radar wind pro-
filer can retrieve data in two different modes (high and low
resolutions) with vertical resolutions of 60m and 105m, re-
spectively. PBL heights used in this study were estimated
from subhourly vertical velocity and returned signal strength
(signal-to-noise ratio) data using the algorithms and qualita-
tive analysis following Wyngaard and LeMone [1980],
Bianco and Wilczak [2002], and Bianco et al. [2008]. The
wind profiler can detect PBL heights from about 150m to
4000m with an accuracy of ±200m [Dye et al., 1995].
Hourly wind (0000–2300 LST) and Zi (0800–1700 LST,
available only during daytime) measurements from the clos-
est profiler to the GHG measurement site were used to eval-
uate WRF simulations. For example, most relevant to the
ARV GHG measurement site, we compared Zi from WRF
with measurements from the LHS profiler. For the MAD
and TRA GHG sites, we used wind profiler data from the
CCL site. As in Zhao et al. [2009] and Jeong et al. [2012a,
2012b], we assume that the RMS scatter in predicted versus
measured Zi can be represented as the sum of squares of mea-
surement uncertainty (~ 200m) [Dye et al., 1995] and WRF
model uncertainty. In other words, the model uncertainty is
estimated by computing the model-data RMS scatter using
hourly data and subtracting an estimated measurement error
(~200m) in quadrature. When the model-data RMS error is
less than 200m, we use the calculated RMS error value for
the model uncertainty. For comparison between WRF and
profiler measurements, we used data for May 2010, June
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2010, October 2010, and January 2011 to represent spring,
summer, fall, and winter seasons, respectively. Due to data
availability, we used 2010 data for spring and summer except
for the CCO site for which May and June 2011 data were
used. For the LHS site, we used September 2010 data for fall
because the LHS profiler data were not available after
September 2010. Thus, we used the result from the CCL site
for the LHS site after September 2010. Based on 2008 data at
the Sacramento profiler used for Jeong et al. [2012a, 2012b],
we note that the RMS values in PBL depth comparison (pre-
dicted versus measured) are high (310 to 415m) during win-
ter and relatively low (160–220m) during summer, showing
seasonal variation. The error analysis obtained in the current
study exhibits similar seasonal variation (i.e., high winter er-
ror versus low summer error) in the PBL error, suggesting
posterior emission estimates likely capture variations in sea-
sonal emissions and annual total emissions, though it is pos-
sible that transport uncertainties over the 3month seasonal
periods may vary somewhat from those determined from
the individual months.
[17] The WRF-simulated Zi was generally consistent with

the measured Zi based on the best fit slopes (~ unity) of pre-
dicted (WRF) versus measured (wind profiler) Zi. For some
cases, there were slight biases based on the regression analy-
sis of predicted versus measured Zi. During June, the CCO
site showed a slightly higher best fit slope of 1.29 ± 0.13 than
unity, while the LHS site yielded a slightly lower slope of
0.8 ± 0.04 than unity. However, when we compared the mean
diurnal cycles of predicted and measured Zi, we found no ob-
vious bias at the two sites. Furthermore, we calculated the
difference (predicted�measured) between the predicted
and measured Zi means which were �64 ± 86m (95% CI,
with a large enough sample size (>150) uncertainty estima-
tion based on both t and normal distributions yielded the
same CI) and 4 ± 60m for the LHS and CCO sites, respec-
tively. This indicates that the mean biases are only ~5%
and ~1% of the measurement means (1222m and 539m)
for LHS and CCO, respectively, and are well within the
expected measurement accuracy (~200m) of the wind pro-
filer [Dye et al., 1995]. Also, the result in a t test for two
means showed that the difference between predicted and
measured Zi for both sites was not significant: t(df = 358) =
1.47 with p value = 0.14 and t(df = 295) =�0.14 with
p value = 0.89 for LHS and CCO, respectively. Based on this
analysis, we are reasonably confident in assuming that ran-
dom errors dominate in the following analysis.
[18] Following Jeong et al. [2012a, 2012b], we computed

CH4 mixing ratios (CCH4) based on the perturbation in Zi
(20% decrease) to estimate the sensitivity of CCH4 to Zi
(i.e., dCCH4/dZi) as a first-order approximation. By reducing
original Zi from the WRF model by 20%, we obtained
perturbed CH4 mixing ratios, which are compared with the
original (normal) CH4 mixing ratio to compute dCCH4.
Similarly, we computed dZi by comparing the perturbed Zi
and normal Zi. Then, we calculated the monthly mean
dCCH4/dZi (in units of ppb/m), which represents the gradient
of CH4 mixing ratios with respect to Zi. Finally, we applied
the inferred RMS errors (in units of meters) in the
WRF-STILT model to dCCH4/dZi to estimate errors (in
ppb) associated with Zi for each season and each site.
Within a given season, monthly PBL uncertainty was
obtained by scaling the uncertainty value for each

representative month (a total of 4months) in proportion to
the background-subtracted mean mixing ratio. The estimated
uncertainties ranged from ~5 ppb to over 200 ppb depending
on the season and site, yielding large errors during winter and
relatively small errors during summer. For instance, the ARV
and MAD sites with the mean background-subtracted mixing
ratio of ~500 ppb in January showed large errors associated
with Zi (~200 ppb). In June, the uncertainties due to Zi errors
in the ARV and MAD sites were relatively small (56 and
35 ppb, respectively) although the mean mixing ratios were
also low (125 and 105 ppb).
[19] Uncertainty in modeled CH4 mixing ratios due to er-

rors in modeled winds was estimated by comparing WRF-
simulated winds and measured winds from the four wind pro-
filer sites (Figure 2) for a total of four selected months as in
the case of Zi. Following Jeong et al. [2012a] and Newman
et al. [2013], when we compared WRF-simulated winds with
profiler-measured winds at the available levels of profilers
near the surface (~200m above mean sea level), the RMS
errors in the wind U and V components varied depending
on the season and measurement location. For the SAC
profiler site (most relevant to WGC), the RMS errors for
the wind U/V components were 3.42 (best fit slope of pre-
dicted versus measured with standard error = 1.00 ± 0.03)/
2.95 (1.13 ± 0.02), 2.89 (1.39 ± 0.11)/4.96 (1.41 ± 0.11),
3.37 (1.04 ± 0.04)/3.11 (1.15 ± 0.02), and 2.87 (0.98 ± 0.03)/
2.88(1.05 ± 0.03)m s�1 for October, January, May, and
June, respectively. For the CCL site (most relevant to MAD
and TRA), we used data for October and January only be-
cause profiler data were not available for spring and summer
2011. The RMS errors for the U/V components were 3.77
(fit slope = 0.96 ± 0.03)/3.48 (fit slope = 1.04 ± 0.03) and
2.76 (1.01 ± 0.04)/2.91 (1.32 ± 0.05)m s�1 for October and
January (later we used the SAC site results for the other
months to perform STILT ensemble runs). We evaluated
winds at the CCO site for the months of May and June
2011 when CH4 measurements were made at the STB site
near the CCO site. The wind U/V RMS errors were 4.22
(fit slope = 1.03 ± 0.04)/5.99 (fit slope = 1.14 ± 0.03) and
3.17 (0.95 ± 0.03)/4.45 (1.06 ± 0.03)m s�1 for May and
June, respectively. Since profiler wind data for the LHS
site were not available after early September 2010, we
used results from either SAC or CCL sites to run the STILT
model for error quantification. For January, when WRF
overestimated wind speeds relative to profiler winds, we re-
moved outliers (data points corresponding to> 2 standard
deviation of hourly measured wind speed for the month) to
avoid biases in inverse analyses. To estimate the effect of un-
certainty in CH4 mixing ratios due to winds (StransWIND) and
particle number (Spart), we ran the STILT model 10 times and
computed ensemble predicted mixing ratios for a given site
and month (a total of four selected months as in the Zi case).
Based on 10 ensemble runs, we estimated the RMS differ-
ence about the mean of the ensemble mixing ratios for each
model time step and use the monthly average RMS as the
combined uncertainty due to wind and particle number er-
rors. Following the method in Zhao et al. [2009], Jeong
et al. [2012a, 2012b], and Lin and Gerbig [2005], we propa-
gated a stochastic component due to the wind velocity error,
which was estimated from the model-data wind comparison,
through STILT. As in Jeong et al. [2012a, 2012b], we
adopted the setup from Lin and Gerbig [2005] where they
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used 240min, 120 km, and 900m for correlation time scale
(i.e., time scale for the temporal correlation to decay to zero),
horizontal correlation scale and vertical correlation scale, re-
spectively. This approach yielded a mixing ratio variation of
1–15 ppb depending on the season and site. As with the Zi
case, the errors due to winds were higher during winter
(8–15 ppb) than during summer (~ 2 ppb).
[20] Following Zhao et al. [2009] and Jeong et al. [2012a,

2012b], we assumed that all of the errors are independent.
The errors were combined in quadrature to yield a total
expected model-data mismatch error, and the total error for
each site is summarized in Table 3. Depending on the month
and measurement location, the errors ranged from 20 to
233 ppb, which are approximately 30–60% of the back-
ground-subtracted mean mixing ratio. The total error was
particularly large (100–233 ppb) during winter in the ARV

and MAD sites where the background-subtracted mean
mixing ratio was also high (220–520 ppb).

3. Results

3.1. CH4 Mixing Ratios

[21] Figure 3 shows the 3-hourly measured mixing ratio,
background mixing ratio, and predicted (before inversion)
mixing ratio using the CALGEM prior model for the five net-
work sites. Predicted mixing ratios are shown only for the
data points used in the final inversion during the well-mixed
periods (noon–afternoon). For inverse analyses, we use data
during 12–17 h (LST) except for winter (11–16 LST) during
which we found that PBL tends to collapse earlier in WRF
simulations than in wind profiler measurements. Based on
a sensitivity test to the outlier removal, we find that there
is no significant difference in the posterior emissions for
the Central Valley between the first and final inversions
based on the CALGEM prior (33.01 ± 1.97 versus
32.87 ± 2.09 TgCO2eq yr

�1). This suggests that the small
amount of data (~ 5%) that were removed do not significantly
affect the posterior emissions.
[22] Overall, the predicted mixing ratios at all sites show

underestimation of CH4 compared to the measurements al-
though the prediction captures the synoptic variation of the
measured mixing ratios (Figure 3). The minimum measured
mixing ratios approximate the predicted background CH4

well, suggesting that the estimated background mixing ratios

Table 3. Summary of Estimated Model-Data Mismatch
Uncertainty by Site (ppb)

Site

Month

Sep Oct Nov Dec Jan Feb Mar Apr May Jun

ARV 61 48 53 144 218 112 111 76 46 61
MAD 61 64 98 150 233 100 77 53 34 41
TRA 58 57 100 110 148 73 44 35 30 32
STB NA NA NA NA NA NA NA NA 21 29
WGC 25 27 29 86 128 53 31 22 20 22

Figure 3. The 3-h mean CH4 mixing ratio comparison: measured CH4 mixing ratio during noon–
afternoon hours used in the first inversion (gray open circle), measured CH4 mixing ratio used in the final
inversion (black-filled circle), WRF-STILT predicted (before inversion) CH4 mixing ratio using the
CALGEM prior model +WRF-STILT predicted CH4 background mixing ratio during noon–afternoon hours
used for the final inversion (blue open circle), andWRF-STILT predicted CH4 background mixing ratio using
the 3-D curtain (red dots). Outliers were removed after the first inversion based on the data selection criteria
described in section 2.4.
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are reasonable and there is no significant bias in the measured
mixing ratios. In order to examine systematic biases in back-
ground values, we also computed the intercept from the lin-
ear regression (predicted versus measured) for each month
after subtracting background values from measured CH4

mixing ratios. We found no significant bias in this compari-
son except for January, March, and April, which showed in-
tercepts (in regression coefficients) of �28.65 ± 19.39
(= standard error), �4.78 ± 2.92, and �4.75 ± 2.17, respec-
tively. These values are small compared to the background-
subtracted mean mixing ratio for the corresponding month
and did not affect inversion results significantly. The result

also shows that there is a clear seasonal variation in CH4

mixing ratios with high variability, particularly in winter
while ARV and MAD show high variability throughout the
seasons. The comparison result in STB indicates that the
prior emissions from rice agriculture during late spring and
early summer are significantly lower than actual emissions.
The CALGEM prior estimate for crop agriculture based on
the DNDC model suggests that CH4 emissions from rice ag-
riculture in Region 6 become strong starting in June with an
emission sum of 3.4 TgCO2eq yr

�1 and peaking in August
with emissions equating to 4.6 TgCO2eq yr

�1. We discuss
more on rice emissions later in section 3.3. For WGC, the

Figure 4. Seasonal mean footprints during the noon–afternoon hours for (a) September–October 2010,
(b) November–December 2010, (c) January–February 2011, (d) March–April 2011, (e) May–June 2011
from all five sites, and (f) May–June 2011 from the WGC site only.
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predicted mixing ratios are significantly lower than the mea-
surements, showing similar results to those shown in Jeong
et al. [2012a].

3.2. Footprints

[23] We present the first analysis of footprints that con-
strain most of California’s Central Valley and its surrounding
areas across different seasons. When footprints for all five
sites are combined, the sensitivity of the measurement sites
to surface emissions is significantly improved, as compared
to the result with one site only. Figure 4 shows the average
footprint from the multiple sites during September 2010 to
June 2011, including the average footprint (May–June
2011) using a single site (i.e., WGC) for comparison. The
significance of the multisite network is clear in the figure
where the averaged footprint from a single tower shows lim-
ited sensitivity while the footprint from the multiple sites
shows strong sensitivity in the entire Central Valley.
Although the measurement network significantly expands
the area that is constrained, the network in the Central
Valley shows limited ability to constrain CH4 emissions in
the Southern California region due to weak sensitivity.
[24] Because measurements at STB were available only

during May–June 2011, STB footprints were not simulated
for other seasons. There is a clear seasonal pattern for the dis-
tribution of footprints, which is important to attribute mixing
ratios to different emission sources for each season. Overall,
the seasonal footprints are strong in the north-south direction
in the Central Valley although footprints are strong in the
west-east direction near the WGC site for some seasons.
Depending on the season, footprints allow for constraining
important urban emissions (e.g., South Coast Air Basin).

3.3. Bayesian Inverse Analysis

[25] Bayesian inverse analysis was conducted using two
independent prior emission models: CALGEM and
EDGAR42 emission models. Using each emission model,
we performed Bayesian inversion to estimate optimized
emissions for (1) the 14 regions defined in Figure 1 (region
analysis) and (2) individual emission source sectors (source
analysis). For the region analysis, we solve for a total of 14
scaling factors (i.e., dimension of λ = 14 × 1) for each month
including the region outside California for both emission
models. The dimensions of λ for the source analysis (for each
month) are 9 × 1 (i.e., eight sectors and outside California)
and 17 × 1 (16 EDGAR sectors and outside California) for
the CALGEM and EDGAR42 cases, respectively.
[26] Table 4 summarizes the chi-square linear analysis

results where we show the best fit slopes (with standard
error) of predicted versus measured CH4 mixing ratios
before (prior) and after (posterior) Bayesian region inver-
sion [Press et al., 1992]. The best fit slopes were
obtained using the data from all sites for a given month,
reflecting the aggregate regression of predicted versus
measured mixing ratios. The posterior results in Table 4
were obtained by applying equations (1) and (2) in
section 2.4. Predicted CH4 mixing ratios using the
CALGEM emission model are typically 30–50% of mea-
surements before inversion while EDGAR42-based prior
mixing ratios are 20–40% of measurements. After inver-
sion, the posterior CH4 mixing ratios based on the
CALGEM emission model are consistent with theT
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measurements for most of the months, while the posterior
mixing ratios from EDGAR42 are still lower than the
measurements. To further examine the low best fit slopes
of posterior predictions versus measurements based on
EDGAR42, we conducted an inversion using 100% un-
certainty in the prior. We find that the inversion still
yields best fit slopes of posterior predictions versus mea-
surements that are lower than unity (0.80–0.94) although
the best fit slopes based on the 100% uncertainty assump-
tion are slightly higher than those of the 70% assumption
in the prior uncertainty. This suggests that the spatial dis-
tribution of CH4 emissions in California is not well rep-
resented by EDGAR42. The counterpart source analysis
showed a similar result where EDGAR-based mixing ra-
tios are lower than those of the CALGEM case.
[27] Inversions are performed at the monthly temporal

scale, and inferred CH4 emissions are reported by season
(five bi-monthly seasons during September 2010 to June
2011) for the regions and source sectors where the total emis-
sions are significant and footprints show sensitivity
(Figure 5). Figure 5a shows the Bayesian region analysis re-
sult (solving λ for each region) using the CALGEM prior
emission model. Overall, the inversion results show that ac-
tual CH4 emissions are higher than the prior emissions for
most of the regions. In particular, the posterior (optimized)

emissions are significantly higher than the prior in the
Central Valley (Regions 6, 8, and 12) where measurements
are made, and thus, the emissions are well constrained. For
Region 10 (Southern California region), the posterior uncer-
tainties are only slightly reduced, suggesting that the mea-
surements in the Central Valley weakly constrain the
emissions in Region 10 (see Table 5 for details). The signif-
icantly higher posterior emissions in the San Joaquin Valley
(Regions 8 and 12) suggest that emissions from the livestock
source sector are significantly higher than the prior. Note that
livestock emissions from the CALGEM emission model ac-
count for 87% (4.33 TgCO2eq) and 84% (6.77 TgCO2eq)
of the total emissions in Regions 8 and 12, respectively.
The results also show that there is a clear seasonal variation
in CH4 emissions. For example, in Region 6 where high
emissions are expected from rice agriculture, the posterior
emissions are high during the early fall and late spring–early
summer seasons. We discuss more on rice emissions later in
the section.
[28] We also performed Bayesian region analysis based on

the EDGAR42 emission model (Figure 5b) and compared the
result with the CALGEM case (shown in Figure 5a). In
Table 5, we summarized annual CH4 emissions from the
Bayesian region analyses based on the CALGEM and
EDGAR42 prior emission models, including the aggregated

Figure 5. Estimates of posterior CH4 emissions (TgCO2eq yr
�1) by season: (a) region analysis based on the

CALGEM emission model, (b) region analysis based on EDGAR42, (c) source analysis based on the
CALGEM emission model, and (d) source analysis based on EDGAR42. Only regions with significant emis-
sions are shown. The annual mean prior (gray bar) is compared with posterior seasonal emissions (color bars).
WW, LF, DLS, NDLS, NG, PL, WL, and CP represent wastewater, landfill, dairy livestock, nondairy live-
stock, natural gas, petroleum, wetland, and crop agriculture sources, respectively. AS, EF, GPD, MM, OPR,
RT, SW, and WW represent agricultural soils, enteric fermentation, gas production and distribution, manure
management, oil production and refineries, road transportation, solid waste, and wastewater, respectively.
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uncertainty for the entire state as well as that of each region.
For the uncertainty in state total emissions, we report the un-
certainty using two error assumptions: uncorrelated (only in-
cluding diagonal elements of the posterior error covariance
matrix) and correlated (also including off-diagonal elements)
errors among the regions. As shown in Table 5, the correlated
error assumption yields slightly smaller aggregated uncer-
tainty than that of the uncorrelated assumption. This is be-
cause there are anticorrelations (i.e., negative correlation
coefficients) [Tarantola, 1987] between some of the regions
as reported by Jeong et al. [2012a] and Bergamaschi et al.
[2005]. Bergamaschi et al. [2005] showed slightly smaller
aggregated uncertainty in the correlated error estimation than
in the uncorrelated error estimation. Hereafter, we only report
more conservative uncertainty estimates (i.e., based on the
uncorrelated error assumption) to consider potential uncer-
tainties (e.g., uncaptured transport uncertainty) that we may
not have identified although some of the regions may have
correlated errors. Also, we note that we have not defined
the correlations between regions to construct the prior error
covariance for λ. This might affect posterior uncertainty esti-
mation and needs to be investigated further in future studies.
[29] The region analysis results in Table 5 (also in

Figures 5a and 5b) show that the current measurement
network estimates annual average CH4 emissions for
the Central Valley (i.e., Regions 6, 8, and 12) to be
32.87 ± 2.09 (prior = 15.09) TgCO2eq and 31.60 ± 2.17
(prior = 10.79) TgCO2eq based on the CALGEM and
EDGAR42 prior emission models, respectively, assuming
uncorrelated errors between regions. This suggests that the
measurement network constrains emissions in the Central
Valley, independent of a priori emission models. However,
the posterior emission estimates based on the EDGAR42
and CALGEM prior models are only marginally consistent
in the predominantly urban regions (7 and 10) where the
EDGAR42model yields higher CH4 emissions than those es-
timated with the CALGEM model: 29.11 ± 11.59 versus
12.92 ± 6.08 TgCO2eq yr

�1. This is because the EDGAR42
emissions are significantly higher than the CALGEM emis-
sions in Regions 7 and 10 (23.7 versus 10.5 TgCO2eq yr

�1,

see Tables 1 and 2), and our measurement sites in the
Central Valley have relatively weak sensitivity to the urban
regions. Although the results using multiple emission models
help to characterize the uncertainty associated with estimat-
ing emissions at the subregional scale, these results demon-
strate that additional measurements are required in the San
Francisco Bay and Southern California areas in order to
strongly constrain emissions from those urban regions.
[30] We also estimate CH4 emissions by inferring state-

wide scaling factors for each emission source instead of each
subregion. Figure 5c shows the source analysis results using
the CALGEM emission model. These results are consistent
with those of the counterpart inverse analysis for regional
emissions. For example, the source inversion suggests that
actual emissions from livestock are much higher than the
prior. Recall that the region analysis result showed higher
posterior emissions in Regions 8 and 12 where livestock
emissions are dominant (~90% of annual CH4 emissions).
Figure 5c indicates that CH4 emissions from natural gas
sources are generally higher than the prior. However,
more measurements are required to effectively constrain
natural gas emissions from the large urban areas (Regions 7
and 10), which account for 64% of the total natural gas
emissions in the CALGEM model (urban ratio for natural
gas in EDGAR42= 76%).
[31] The source analysis result also indicates that the poste-

rior emissions for crop agriculture are higher during early fall
and late spring–summer seasons than the prior, which are con-
sistent with the region analysis (higher emissions in Region 6).
Our result is similar to that of a recent study based on aircraft
CH4 measurements during the California Research at the
Nexus of Air Quality and Climate Change period in summer
2010 [Peischl et al., 2012]. Peischl et al. [2012] estimated an-
nual CH4 emissions from rice cultivation to be 1.64–
1.95TgCO2eq, which is 3.0–3.6 times larger than the CARB
2008 inventory for rice CH4 emissions (0.54TgCO2eq yr

�1).
This estimate by Peischl et al. [2012] is based on the rice
emission study in a commercial rice field by McMillan et al.
[2007] where they estimated annual CH4 emissions of
26.1–31.0 g CH4-Cm�2 during October 2001 to October

Table 5. Comparison of Annual Posterior CH4 Emissions (TgCO2eq) Between CALGEM-Based and EDGAR42-Based Bayesian
Region Analysis

Prior
Model Emission

Region

TotalR01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13

CALGEM Prior emissions 0.06 0.24 0.34 0.28 0.44 2.08 1.65 5.00 0.66 8.81 0.25 8.01 0.17 28.00
Prior uncertaintya 0.04 0.17 0.24 0.20 0.31 1.46 1.15 3.50 0.46 6.17 0.18 5.61 0.12 9.26b

Posterior emissions 0.06 0.24 0.39 0.29 0.44 4.53 3.01 8.57 0.70 9.90 0.29 19.78 0.16 48.35
Posterior uncertaintyc 0.04 0.17 0.24 0.20 0.29 0.63 1.00 1.27 0.46 6.00 0.17 1.54 0.11 6.47d (6.27)e

EDGAR42 Prior emissions 0.10 0.37 0.68 0.34 0.47 2.62 5.73 3.16 1.11 17.99 0.31 5.01 0.46 38.34
Prior uncertaintya 0.07 0.26 0.48 0.24 0.33 1.83 4.01 2.21 0.78 12.59 0.22 3.51 0.32 14.02b

Posterior emissions 0.10 0.39 0.78 0.36 0.51 5.72 8.52 7.99 1.23 20.59 0.38 17.89 0.51 64.97
Posterior uncertaintyc 0.07 0.26 0.47 0.24 0.33 0.96 1.97 1.20 0.77 11.43 0.21 1.53 0.32 11.85d (11.57)e

aThe 70% uncertainty in priors.
bSquare root of sum of squares of prior uncertainty for each region.
cPosterior uncertainty = 1σ.
dThis uncertainty is calculated based on the uncorrelated error assumption between the regions.
eThis uncertainty in parentheses is calculated based on the propagation of correlated errors using the posterior error covariance matrix as σ2e ¼ ∑

n

i
eiσið Þ2þ

∑
n

i
∑
n

j j≠ið Þ
eiejρijσiσj;where σe is the aggregated emission uncertainty, n is the number of regions (i.e., n=13), ei (or ej) is the prior emission for each region, σi (or σj) is the

posterior scaling factor uncertainty for each region from the posterior error covariancematrix, and ρij is the correlation coefficient (�1≤ρij≤1) between regions i and j.

11,349

JEONG ET AL.: CALIFORNIA’S METHANE EMISSIONS



2002. Assuming posterior emissions for July and August (not
available in our study) are proportional to the prior and scaling
(available) June posterior emissions according to the prior
ratios of July and August to June (3.26TgCO2eq/
3.59TgCO2eq and 5.10/3.59, respectively), we find that the
annual rice emission total is 1.43± 0.19TgCO2eq (original
DNDC prior for rice = 1.34TgCO2eq), which is very similar
to that of Peischl et al. [2012]. The slight difference between
the estimate by Peischl et al. [2012] and our estimate is possi-
bly due to the difference in emissions during late fall and
winter. CH4 emissions during late fall and winter from
McMillan et al. [2007] are not negligible while our a priori rice
emissions based on the DNDCmodel described by Salas et al.
[2006] are insignificant and often negative.
[32] The source analysis results based on EDGAR42 are

shown in Figure 5d, where eight major sources (~95% of
total emissions) out of a total of 16 sources are compared.
While posterior emissions from livestock for the entire state
are similar between the CALGEM (32.23 ± 2.92 TgCO2eq)
and EDGAR42 (33.60 ± 3.72 TgCO2eq) models, the source
analysis based on EDGAR42 shows different posterior emis-
sions for some of the source sectors, compared to the
CALGEM case. In particular, the state-wide annual CH4

emission for solid waste (equivalent to landfill of the
CALGEM model) based on the EDGAR42 prior model is
23.38 ± 6.47 TgCO2eq, which is only marginally consistent
with that (14.43 ± 3.92) estimated using the CALGEM
model. This is likely due to the fact that ~70% of landfill
emissions are concentrated in the urban regions (Regions 7
and 10), and these urban regions are only weakly constrained
by the measurements in the Central Valley.

4. Discussion and Conclusions

[33] The current GHG network constrains annual CH4

emissions from California’s Central Valley to be
32.87 ± 2.09 TgCO2eq and 31.60 ± 2.17 TgCO2eq based on
the CALGEM and EDGAR42 prior models, respectively,
showing consistency between the two independent prior
emission models. However, as noted above, our region anal-
ysis estimates state total annual CH4 emissions to be
1.51 ± 0.20 times and 2.03 ± 0.37 times (Table 5) the current
CARB inventory (32 TgCO2eq) (California Air Resources
Board, 2011) using the CALGEM and EDGAR42 priors, re-
spectively. This suggests that uncertainty in the state total
emission estimates are dominated by uncertainty in emis-
sions from the urban regions.
[34] To address the uncertainty in state total emissions by

constraining urban emissions based on published work, we
consider a range of emission estimates for the larger Los
Angeles metropolitan area (hereafter SoCAB). All relevant
studies in SoCAB use correlations of CH4 to CO enhance-
ments and CO emission inventories to estimate CH4 emis-
sions [Hsu et al., 2010; Wennberg et al., 2012; Peischl
et al., 2013]. Here we apply the results from Wennberg
et al. [2012], which provide a more conservative estimate
(0.44 ± 0.15 TgCH4 yr

�1) for SoCAB than those of Hsu
et al. [2010] (0.38 ± 0.10 TgCH4 yr

�1, recalculated by
Wennberg et al. [2012]) and Peischl et al. [2013]
(0.41 ± 0.04 TgCH4 yr

�1). This estimate of urban emissions
is 0.91 to 1.84 times the CALGEM prior for SoCAB but a
factor of 0.45 to 0.91 times SoCAB emissions in

EDGAR42, which taken together with results from the
Central Valley suggest that CALGEM provides a superior
representation of California CH4 emissions. Here we esti-
mate state total CH4 emissions as the sum of our posterior
emission estimates for the Central Valley and other nonurban
regions (33.24–37.63TgCO2eqyr

�1) and the CALGEM prior
emissions for major urban regions (10.45TgCO2eqyr

�1) scaled
by a factor ranging from 0.91 to 1.84 from the above comparison
with Wennberg et al. [2012]. This yields annual state total
emissions of 42.75TgCO2eq yr

�1 (= 33.24 + 10.45× 0.91) to
56.86TgCO2eq yr

�1 (= 37.63 + 10.45 × 1.84), suggesting that
California total emissions are 1.34 to 1.78 times the current
CARB CH4 inventory.
[35] We also note that the primary source of uncertainty

is due to under-sampling of urban regions, not temporal
coverage. For example, when we compare the 10month
case (without July and August) with the full year case
based on the results from Jeong et al. [2012a] that
analyzed a full year of data from the Central Valley, we
do not find a significant difference (13.0 ± 2.0 versus
14.1 ± 2.2 TgCO2eq yr

�1) for the regions (Regions 6–8)
near the WGC tower.
[36] In conclusion, our measurements constrain annual

mean CH4 emissions from California’s Central Valley and
state total emissions when combined with independent esti-
mates from urban regions. In the future, we expect that addi-
tional tower measurements in the San Francisco Bay and
Southern California areas will be effective in constraining ur-
ban emissions and that measurements of source specific
tracers (e.g., CO, VOCs, and potentially CH4 isotopes) will
help separate different sources of CH4 [Townsend-Small
et al., 2012; Peischl et al., 2013].
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